HEAD OFFICE

FARIDABAD : 40, Sector 27A,

Faridabad - 121003,

India.

Tel : +91 129 4045901, 87500 55209

Email: info@anergy.in

BRANCH OFFICES

MUMBAI

AHMEDABAD : Email : anergy_guj@anergy.in

Mob: +91 77159 68909

BANGLURU : Email : anergy_bng@anergy.in

Mob : +91 70909 29217

CHENNAI : Email : anergy_chn@anergy.in

Mob: +91 87545 76825

HYDERABAD : Email : anergy_hyd@anergy.in

Email: anergy_mum@anergy.in Mob: +91 94302 03503

INSTALLATION

&

COMMISSIONING MANUAL

for

GAS BASED PRESSURISATION SYSTEM

IN THE SERVICE OF THE BUILT ENVIRONMENT

Tel: +91 129 4045901

87500 55209

India.

Email : info@anergy.in Web : www.anergy.in

List of Contents

		Page
1	INTRODUCTION	2
2	RECEIPT OF MATERIAL	3
3	DO'S & DON'T	3
4	SCHEMATIC DIAGRAM	4
5	CLOSED EXPANSION TANK DIMENSIONS	5
6	AIR SEPARATOR DIMENSIONS	5
7	MICROBUBBLE AIR DIRT SEPARATOR DIMENSIONS	6
8	TECHNICAL DATA	7
9	CLOSED EXPANSION TANK CONNECTIONS	7
10	INSTALLATION OF CLOSED EXPANSION TANK	8
11	INSTALLATION OF PRESSURISATION UNIT	9
12	CONTROL PANEL OPERATION	10
13	WIRING DIAGRAM OF PRESSURISATION UNIT	
	MODEL PSU-225 PN10	11
	MODEL PSU-225/260/2100 PN16/2150 PN20	12
14	COMMISSIONING PROCEDURE	13
15	TROUBLE SHOOTING CHART	13
16	PREVENTIVE MAINTENANCE	14
17	RECOMMENDED SPARE PART LIST	14

Preventive Maintenance

S.No	Description	Inspection Frequency
1.	Check Nitrogen Pressure in Pressurised Tank, To Check Nitrogen Pressure, isolate expansion tank from system and drain its water. Charge with Nitrogen, if required.	Quarterly.
2.	Clean Make-up water Strainer.	After initial commissioning and then Quarterly.
3.	Check all Electrical connections Tighten if loose.	Quarterly.

14

Recommended Spare Parts List

Pressurisation Unit

- 1. Pressure Transmitter
- Pump (as Per Model)
 Controller (as Per Model)
- Safety Valve
 Pressure Gauge

Expansion Tank

- 1. Bladder (as Per Model)
- Pressure Gauge
 Air Valve

Air Separator/MBDS

1. Supervent

The techniacal details stated in this manual can be modified wothout any prior notice due to design improvments.

1

Commissioning Procedure

No.	Description		Tick if OK
1	Check factory pre-charge and record.	Bar	
2	Check for any leakage from air valve by soap test.		
3	System is installed as per schematic diagram.		
4	Piping connection are done as per schematic diagram.		
5	Makeup water with positive pressure is connected at inlet connection of pressurisation unit.		
6	Safety valve is installed as indicated in the schematic diagram.		
7	Pressure gauge is installed at main return pipe to assess the CHW system static head.		
8	Correct power is supplied/connected as per model of pressurisation unit.		
9	Correct charge of nitrogen is charged in tank and recorded.	Bar	
10	Ensure correct pressure of pressure transmitter is set at the control panel and recorded.	Bar	

Trouble Shooting Chart

S.No.	Symptom	Possible causes	Solution
1	MCB tripping	1. Short circuit	1. Check wiring
2	No display in controller LCD	No power supply Faulty controller	Restore power Replace controller
3	Possible Alarms		
а	Pump 1/2-stop & red LED glow	Pump not working	Check pump/wiring
4	Pressure error	Loose or short wire Sensor faulty	Check connection Replace sensor
5	Pump run but pressure not build	Wrong rotation Air in pump	Interchange two phase from MCB (mains supply) Open purge screw & remove air

Introduction

We thank you for procuring Hydronic Pressurisation System from us.

This system comprises of following items:

- 1. Air Separator
- 2. Pressurised Closed Expansion Tank
- 3. Pressurisation Unit

This system ensures that the Air Conditioning System operates at positive pressure and entrained air is removed from the system through Air Separator.

It is important that all three above equipments are procured and installed to have a good hydronic system.

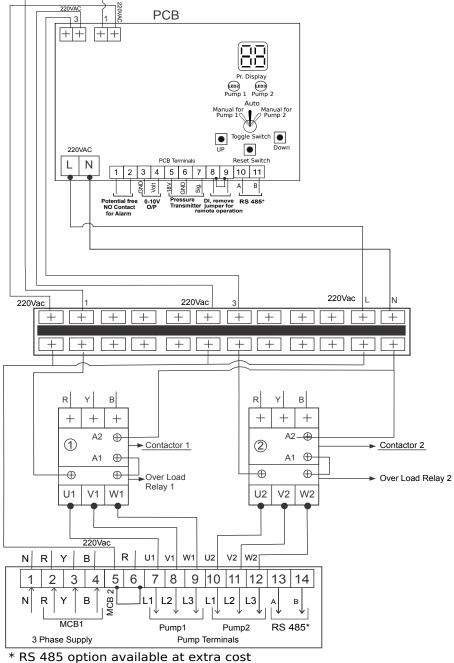
It is also important that system is installed and commissioned as per the guidelines stipulated in this manual, and by a trained person.

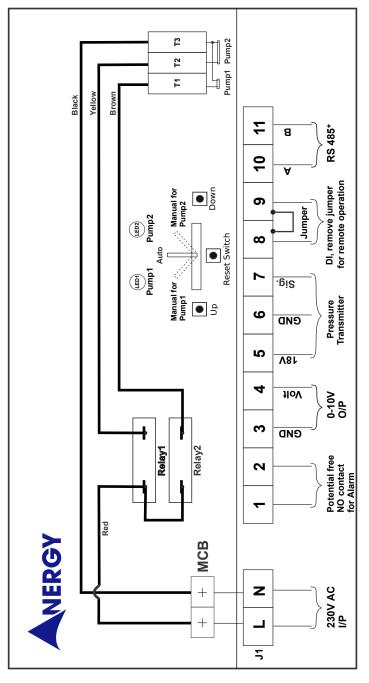
Moreover regular check-ups is also recommended to ensure proper functioning of the system and controls.

We offer Annual Labour maintenance Contract. You may contact our offices for further details.

CEO Anergy Instruments Pvt. Ltd

13


Receipt of Equipment


- 1. Check all material is received as per packing list.
- 2. Ensure that there is no transport damage. In case of any damage, same should be rectified before installation/commissioning.
- 3. Check and record the factory pre-charge pressure indicated on the pressure gauge. In case of no pressure inform 'Anergy'.

Do's & Don't

Do's	Don't
The equipment should be installed on level P.C.C foundation.	Never fill water in pressurised expansion tank until required pressure of nitrogen gas has been charged.
Piping connections should be as per schematic diagram.	Do not connect expansion tank during hydro-testing.
Always give proper power supply as per model of pressurisation unit.	during flydro toomig.
Only trained person should install and commission the system.	
5. The make-up pressure should be within 0.5 bar to 2 bar.	

Wiring Diagram Model PSU-225/260/2100/2150-R4* PN16, PN20, PN25

* RS 485 option avaiable at extra cost

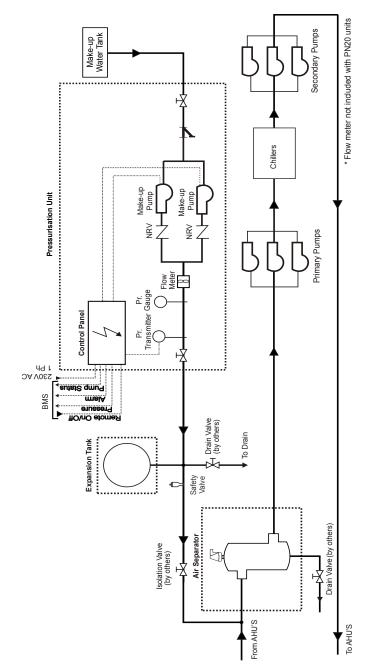


Fig. 1 Schematic drawing of pressurisation unit, expansion tank and air separator with primary and secondary pumps.

Closed Expansion Tank

Dimensions

Model Type	Capacity Litres	Conn. Size (C)	Н	h	D	Approx. Weight Kgs. (empty)
CET - 24	24	1"	470	-	280	5
CET - 50	50	1"	490	115	410	11
CET - 100	100	1"	760	120	460	15
CET - 300	300	11/4"	1130	120	650	45
CET - 500	500	11/4"	1400	200	750	70
CET - 750	750	2"	1300	300	870	220
CET - 1000	1000	2"	1600	300	910	265
CET - 1500	1500	2"	1600	300	1110	405
CET - 2000	2000	2"	2110	300	1110	490
CET - 2500	2500	2"	1900	300	1310	680
CET - 3000	3000	2"	2300	300	1310	780
CET - 4000	4000	2"	2300	300	1520	1110

Tanks as per IS: 2825-1969 / EN: 97/23/EC

Pressurisation Unit

Dimensions

Model	L	w	н
PSU-225 (PN10)	600	500	580
PSU-225 (PN16)	1050	700	830
PSU-260 (PN16)	7050		830
PSU-2100 (PN16)	1050	700	830
PSU-2150 (PN20)	1050	700	1050

All dimensions are in mm .

Control Panel Operation

- A Set Point The Set point of the pressure is set by up and down keys, on pressing any key, display starts blinking and shows the set-point. It again shows the actual pressure when it is left idle for 15secs.
- B Auto Mode Pump switches OFF when the pressure exceeds the set-point and is switched ON, as the pressure goes (0.5 bar) below the set-point. If the pressure is not achieved in 15mins, the pump will switch OFF and after 1min other pump will start to achieve the required pressure.
- C Manual Mode Operation can be switched from Auto mode to Manual mode for Pump 1/ Pump 2 by the toggle switch. In manual mode pump operates continuously for 30mins, then stops for 10mins before restarting.
- D Alarm A NO contact of relay is provided for the alarm which closes when a alarm is raised. In case of alarm, press reset key to clear alarm or switch OFF & then switch ON the mains.
- E Remote Operation For operating pressurisation unit from a remote location, manually or through BMS, an NO contact can be provided across terminal 8 and 9 of the control panel after removing the jumper.

Please note the operation of pump shall be as per pressure transmitter setting and system pressure.

1050 700 1050

40

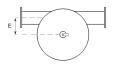
Installation of Pressurisation Unit

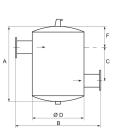
No.	Description	Tick if OK
1.	Only trained person should carry out installation.	
2.	Mount on a level P.C.C foundation.	
3.	The inlet connection, of pressurisation unit is connects to make-up water pipe according to fig. 2 .	
4.	The make-up water to the pressurisation unit should be at positive pressure, with minimum of 0.5 bar and maximum of 2 bar.	
5.	Install piping of 1" size from pressurisation unit to expansion tank connection and to main chilled water return pipe as shown in fig. 2 .	
6.	Connect power supply to single/three phase MCB in control panel as per model of pressurisation unit.	

Pressure Setting of Pressurisation Unit

Typical Example:

IF Building Height is ----- 30m = 3.0 bar (Static Head) Add for Safety = 0.5 bar

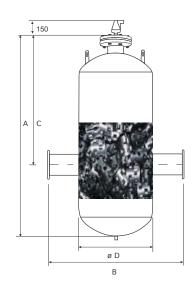

Expansion Tank N2 Pressure charge = 3.5 bar Pressure Transmitter Setting = 4.5 bar


Pump on at - 4.0 bar Pump off at - 4.5 bar

Centrifugal Air Separator (PNI0)

Dimensions

Model	Α	В	С	ØD	Е	F	Weight (Kgs)
CAS-250F	1125	1002	435	750	230	345	185
CAS-300F	1350	1152	540	900	280	405	290
CAS-350F	1575	1356	655	1050	340	460	430
CAS-400F	1800	1514	750	1200	390	525	660
CAS-450F	2025	1664	865	1350	435	580	830
CAS-500F	2250	1876	970	1500	490	640	1260
CAS-600F	2700	2184	1200	1800	575	750	1800



All dimensions are in mm . Flanges to IS: 6392 - 1971.

Microbubble Air & Dirt Separators (PN16)

Dimensions

Model	Α	В	С	ØD	Weight (Kgs)
MBDS - 80F	685	460	455	220	38
MBDS-100F	685	460	460	220	38
MBDS-125F	800	520	515	275	55
MBDS-150F	910	570	575	325	65
MBDS-200F	1135	650	685	400	95
MBDS-250F	1360	800	800	500	135
MBDS-300F	1585	960	910	600	215
MBDS-350F	1785	1110	1025	700	340
MBDS-400F	2035	1270	1135	800	425
MBDS-450F	2260	1430	1245	900	540
MBDS-500F	2485	1590	1360	1000	820
MBDS-600F	2935	1900	1585	1200	1395

All dimensions are in mm . Flanges to IS: 6392 - 1971.

Technical Data

Control panel

protection

Model : PSU-225 PSU-225 PSU-260 PSU-2100 PSU-2150 Pump : Multistage, Centrifugal Type Power (KW) 0.55 0.55 1.1 1.5 2.2 Power supply : 230V, 1Ph 415V, 3Ph (AC, 50Hz) Max. flow rate (CMH) Max. head (mWC) 25 25 150 Pressure rating **PN20**PN16 70°C Max. fluid temp. Protection : IP55 Controls Pressure range : 0 to 10 har 0 to 25 har

:IP55

Closed Expansion Tank Connections

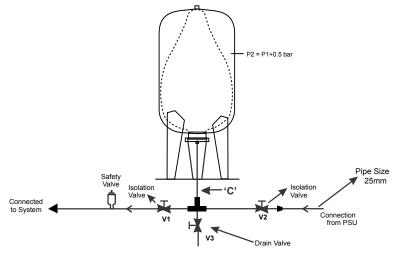


Fig. 2 Typical Connections of Pressurised Tank

Installation of Closed Expansion Tank

No.	Description		Tick if OK
1	Only trained person should carry out installation.		
2	Mount the expansion tank on level P.C.C foundation/floor.		
3	Tank is generally connected to the suction side of the primary pump before the air separator.		
4	Connect pipe 'C' to expansion tank connection as per table on page 5 and diagram on page 7.		
5	Install pipe and two isolation valves V1 $\&$ V2 on either side of the tank.		
6	If multiple expansion tanks of smaller capacities are used in same CHW line to have larger capacity, then provide common isolation ball valves.		
7	Install the drain piping and valve V3 of 1" size at the bottom of the tank for drainage.		
8	Install the safety valve on the pipe connecting expansion tank to the system.		
9	Keep valves V1 $\&$ V2 closed and open drain valve V3 and drain water from the expansion tank, if any.		
10	Check standing pressure at gauge P1 of chilled water system.	Bar	
11	The expansion tank should be charged with nitrogen through Air Valve provided on the tank, as per site requirements.		
12	The charge pressure P2 should be calculated as per typical example indicated below.		
13	After charge required nitrogen pressure, close drain valve V3 and open valves V1 and V2 to fill the tank.		

Pressure Setting of Expansion Tank

Typical Example:

IF Building Height is------30m = 3.0 bar (Static Head)

Add For Safety = 0.5 bar

Expansion tank N2 Pressure charge = 3.5 bar (Total)

Important: 1. Never fill water into tank until the tank is charged with required nitrogen pressure. Bladder can get damaged if water is released into tank, without nitrogen gas charging.

Do not connect expansion tank during hydro-testing of complete system.